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Highlights 

• Automatic and accurate 3D Active Contour method for MRI liver segmentation 
• New approach to enhance the contrast in the input MRI image 
• The proposed methodology replaces the input image by a model based probability map 
• The minimization of this model is achieved by means of dual approach of Chambolle 
• Validation of the performance of the method with well-stablished quality metrics 

 

Abstract 

Liver cancer is one of the leading causes of cancer-related mortality worldwide. Non-invasive techniques 
of medical imaging such as Computerized Tomography (CT) and Magnetic Resonance Imaging (MRI) 
are often used by radiologists for diagnosis and surgery planning. With the aim of assuring the most 
reliable intervention planning to surgeons, new accurate methods and tools must be provided to locate and 
segment the regions of interest. Automated liver segmentation is a challenging problem for which 
promising results have been achieved mostly for CT. However, MRI is required by radiologists, since it 
offers better information for diagnosis purposes. MRI liver segmentation represents a challenge due to the 
presence of characteristic artifacts, such as partial volumes, noise, low contrast and poorly defined edges 
of the liver in relation to adjacent organs. In this paper, we present a method for MRI automatic 3D liver 
segmentation by means of an Active Contour model extended to 3D and minimized by Total Variation 
dual approach that has also been extended to 3D. A new approach to enhance the contrast in the input 
MRI image is proposed and it allows more accurate segmentation. The proposed methodology allows 
replacing the input image by a probability map obtained by means of a previously generated statistical 
model of the liver. An Accuracy of 98.89 and Dice Similarity Coefficient of 90.19 are in line with other 
state-of-the-art methodologies.  
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1. INTRODUCTION 

Liver cancer is one of the leading causes of cancer-related mortality worldwide. Diagnostic confirmation 
is performed by percutaneous or surgical biopsies although currently these invasive techniques can be 
partially replaced by medical imaging techniques such as Computerized Tomography (CT) and Magnetic 
Resonance Imaging (MRI), with obvious benefits for the patient. For this reason, it becomes of key 
importance to provide radiologists with new methods and tools for medical image understanding capable 
of segmenting properly the organ of interest and the pathologies present inside [1]–[4]. 

In the literature of liver segmentation, several approaches for image processing and segmentation can 
be found mainly over CT images. However, MRI is required by radiologists, since MRI images can 
provide richer information for diagnosis purposes.  Automatic liver segmentation in MRI is a challenging 
problem due to some artefacts and characteristics of the images, such as noise, the low contrast of the 
liver in relation with adjacent tissues or partial volume effect [5]. Delimitation of border is often 
confusing. Robust methods capable of dealing with these problems are needed. 

Regarding recent state-of-the-art methodologies for liver segmentation on MRI images, some of them 
are semiautomatic [6] [7] and thus requiring interaction from the user.  In recent works for automatic liver 
segmentation mainly deformable models based on different approaches over active contours are 
developed. Deformable models are capable of segmenting elements with complex topological shapes. 
Reska et al. propose in [8] a 3D active isosurface method aiming to locate the liver in MRI images. Yuan 
et al. developed in [9] a liver segmentation method over MRI images based on fast marching methods. 
These methods provide reasonable results whenever images present good contrast among organs, but 
active contours can get stuck on local minima if the minimization process does not manage to converge to 
a global solution. 

Other works in state-of-the-art apply artificial neural networks to extract the liver volume from the 
MRI abdominal images [10][11]. Masoumi et al. combine artificial neural networks architecture with 
watershed algorithm for liver segmentation, which provide good results that will be compared with our 
method in the discussion section [12]. Watershed techniques are used by Rafiie et al. in [13] to create 
regions in the image. Features are extracted from these regions to feed the neural network architecture. 
Recently, watershed techniques have also been proposed in combination with stochastic partitions to 
enhance the gradient of the original MRI image and it has been validated as a robust method in [14].  

Even if textural and spatial relations play an important role for 2D segmentation, they discard the more 
accurate 3D textural and spatial relationships. This is of utter importance when large organs such as the 
liver are involved. The spatial relation among the pixels along the third axis of the volume provides 
information on the continuity of the candidate segmented regions constituting a straightforward feature to 
get a more robust segmentation. The main drawback in any 3D approach is its pre-assumed extensive 
computing time.   

Several recent works dealing with 3D approach for liver segmentation over MRI images can be 
identified in the literature. Gloger et al. develop a fully automatic three-step 3D segmentation approach in 
MRI based upon a modified region growing methodology and a further thresholding technique [15]. 
Other approach of same authors can be found in [16] to estimate liver volume. Therein, it is proposed a 
3D level set algorithm that delineates liver tissue on liver probability. Probability maps for healthy and 
fatty liver are generated by using linear discriminant analysis and Bayesian methods. Huynh et al. propose 
in [17] 3D liver segmentation in three stages, joining noise reduction, 3D fast marching methods, and 3D 
geodesic active contours.  

In this paper, we propose an accurate 3D method for automatic liver segmentation in MRI. Our method 
adapts a previously existing active contour model and it is minimized by total variation dual approach. 
[18]. Neither this active contour model nor the minimization approach has ever tackled the difficulty of 
segmenting the liver in MRI images. Another contribution of this paper is a new approach to improve the 



contrast in the MRI image that will allow more accurate segmentation. The proposed methodology 
replaces the input image by a model based probability map.  

The rest of the paper is structured as follows: section 2 details the proposed system and method for 
segmentation, section 3 describes the experimental results, section 4 contains the discussion, and in 
section 5 concluding remarks are provided.  

2. SYSTEM AND METHODS 

The method we propose considers an active contour model minimized by variational techniques. 
Specifically, we follow the dual approach to the minimization of the variational energies proposed by 
Chambolle in [18] for the 2D case. This approach has been adopted in general segmentation and 
denoising applications [18][19][20]. However, it has not been applied previously to liver segmentation in 
MRI. Moreover, the image over which the active contour model evolves is not the original one but a 
probability map generated by means of previously built liver model. The proposed algorithm and its 
stages are explained in detail in the following sections.   

2.1. Model based probability image generation 

As it can be appreciated in figure 1, MRI images present poor contrast, which makes quite difficult the 
segmentation. We propose to replace this initial image by a model based probability map. Previously, 
clinically representative sample studies are selected by the radiologist. These examples are employed to 
extract first and second order statistical values (average and standard deviation) of the liver in the image 
and build a prior model. These statistical values considered to build the model of the liver directly depend 
on the MRI sequence to be processed. Thus, in case the processed sequence varies, the liver model is 
updated automatically. 

Once the model of the liver is generated, analysis of MRI sequence is done. The probability for a pixel 
of belonging to class liver is related to an estimate of the distance of that pixel to that class, assuming the 
class as a Gaussian model. The pixels having the smallest distances belong to liver. Under these 
circumstances, the distance that maximizes Bayes criterion is the Mahalanobis distance, by means of the 
following equation: 

𝑋(𝑖, 𝑗) =  �
(𝐼(𝑖, 𝑗) − 𝜇)2
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being 𝐼(𝑖, 𝑗) the value of each pixel in the image, and being 𝜇 the mean value of the model of the liver, 
and 𝜎 is the standard deviation. 

According to eq. (1) every pixel of the image of distances is the result of calculating the Mahalanobis 
distance of the same pixel value to the mean value of liver model in relation to standard deviation in the 
previously generated statistical model. After performing this process slice by slice, the observation of the 
resulting image already gives an idea of how good the new generated image of distances is as an 
improved input for the segmentation process. Pixels that represent the information of the liver appear 
darker, since the distance is expected to be shorter to the generated model. An example of the resulting 
image of distances is shown in Fig.1. 



 

Fig. 1. Image of distances generated for different slices in the sequence. Left: slices of VIBE sequence. Right: the image of 
distances obtained that lead to the probability map. 

We can appreciate that contrast with adjacent elements is clearly improved in the generated image of 
distances compared to original images. Moreover, the inhomogeneity of the images is minimized. Finally, 
assuming the liver represented by a Gaussian model, the obtained image of distances can be transformed 
into a probability map directly after application of the expression in eq. (2) 
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We have assumed that the intensities of the liver in MRI follow a Gaussian distribution. There is a 
large variability in MRI images, according to scanning hardware, protocols, and tissue response that 
conforms a non-uniform scene in every slice. To minimize this irregular illumination effect in the image, 
strong emphasis has been put traditionally in the design of robust anisotropic filters or several image 
enhancement techniques. In our method, we propose to create a probability map by means of a previously 
generated model of the liver to minimize this variability in the image. Besides, we want it to be fast. The 
main aim of this assumption is not to create an accurate model of the liver but to increase the quality of 
the input image to be segmented by any fast means. This approach allows creating a compact descriptor, 
the probability value linked to a Gaussian distribution in a fast mathematical operation. This contributes 
to increase the speed of the whole process at the same time the input image is enhanced to make feasible 
an accurate segmentation.  
 

 
2.2. Active Contour Model and Minimization 

Active contours can segment objects that are highly variable or whose shape may vary slightly over 
time. First approach was known as snakes and was introduced by Kass et al. in [21]. Snakes do not have 
sufficient flexibility to conform to complex shapes. To solve this problem, Malladi et al.[22]  and Osher 
et al. [23] introduced the level set. Even if level set techniques can represent really complex surfaces they 
can get stuck in a local minimum instead of converging on the global one. 

Two methods have become very popular in relation to these segmentation techniques. These are the 
Active Contours Without Edges (ACWE) introduced by Chan et al. [24] and the Geodesic Active 
Contours (GAC) developed by Caselles et al.[25]. The ACWE model is based on the assumption that 
there are two different uniform regions. The transition limit at which the regions are not uniform can then 
be bounded by an active contour. That is, the function 𝑢 can only present two values, 𝑐1 and 𝑐2;  𝑐1  being 



the average intensity of the region 𝐾, and  𝑐2 the average intensity value of the other region, which is 
outside 𝐾. The values 𝑐1 and 𝑐2 are not constant all over the process,  but are modified as long as the 
contour evolves and delimits different regions. This procedure ends when the values 𝑐1(𝐾) and 
𝑐2(𝐾) remain stable and the difference between those values outside and inside the two established 
regions are maximized.  On this basis, and as stated in the work by Chan et al. the energy functional to 
minimize is expressed this way for a 2D image I(x,y): 

 
𝐸𝐴𝐴𝐴𝐴(Ω𝐴 , 𝑐1, 𝑐2, 𝜆) = 𝑃𝑒𝑃 (Ω𝐴) +  𝜆 ∫ (𝑐1 − 𝐼(𝑥,𝑦))2 𝑑𝑥𝑑𝑦 +  𝜆 ∫ (𝑐2 − 𝐼(𝑥,𝑦))2  𝑑𝑥𝑑𝑦Ω\Ω𝐶Ω𝐶

 (4) 

 

where 𝐼 is the image given ΩC a subset of the image domain bounded by closed contour, Per (ΩC) the 
perimeter of the set ΩC, λ is a positive parameter that controls the balance between the regularization and 
fidelity of the solution with respect to the original image I , 𝑐1 and 𝑐2ϵ R. 

As proposed and demonstrated in [24] by Chan and Vese and based on the variational problem, 
equation (4) can be solved to determine the evolution of the whole ΩC in an approach based on level set. 
In this, the regions ΩC and Ω\ΩC are represented by the Heaviside function. Therefore, the energy EACWE 
can be written according to a level set function Φ as follows: 

 
 
𝐸𝐴𝐴𝐴𝐴
2 (𝜙, 𝑐1, 𝑐2, 𝜆) = ∫ |∇𝐻𝜖(ϕ)|𝑑𝑥𝑑𝑦 + Ω  𝜆 ∫ (𝐻𝜖(𝜙)(𝑐1 − 𝐼(𝑥,𝑦))2 + 𝐻𝜖(−𝜙)(𝑐2 − 𝐼(𝑥,𝑦)))2  )𝑑𝑥𝑑𝑦Ω𝐶

       (5) 
 
 Where Ω is the image domain and Hϵ is a regularization of the Heaviside function. 

Regarding implementation issues, 𝑃𝑒𝑃(Ω𝐴) is the total length of all the points belonging to the contour 
of the active contour. Since the contour evolves and changes every iteration, it is updated till 
convergence.  

Geodesic Active Contours are proposed as an improvement of active contours based on the level set 
equation that adds geometric parameters to control the evolution of the curve. A GAC minimizes the 
length of a curve which assigns smaller energy values to curves that attach to regions of the image where 
the module of its gradient is higher. The energy functional model for GAC is: 

 
𝐸𝐺𝐴𝐴(𝐶) =  ∫ 𝑔 𝑑𝑑𝐴                                                                        (6) 

being 𝑔 an edge detecting function, and 𝑑 is defined in the C contour separating ΩC subset of the image 
that is the boundary between the two soft regions. 

The method we propose consists of an active contour model, specifically adapted to liver segmentation 
in MRI and extended to 3D, evolving over our proposed model based probability image. The active 
contour model was first proposed by Bresson [26].  

On the other hand, the variational techniques arise as a mathematical approach to minimize properly 
the active contours and guarantee the global minimum is achieved, and therefore, and optimal 
segmentation. These techniques are also very useful in denoising applications. These techniques consider 
the fact that some energy functions are not strictly convex, implying that there does not exist a unique 
global minimum but rather many local minima. This energy functional defined on the images is such that 
a minimum of such functional provides a solution to the problem of segmentation.  The mathematical 
resolution of the problem can usually be reduced to the solution of nonlinear Partial Differential 
Equations, which can be translated into discrete space in an affordable way to identify a solution. 

In our approach we adapt the active contour model and the minimization process to make it suitable for 
liver segmentation in 2D and 3D space. The energy functional employed in the active contour model 



studied in this paper is represented by the linked relation between the two energies (4) and (6), and 
according to [26], is exposed in equation (7), which is not strictly convex.  

𝐸𝑟(𝑢, 𝑣, 𝑐1, 𝑐2, 𝜆,𝛼,𝜃) =       𝑇𝑇𝑔(𝑢) +  1
2𝜃
‖𝑢 − 𝑣‖𝐿2

2 + ∫ 𝜆𝑃1(𝑥, 𝑐1, 𝑐2)𝑣 +  𝛼𝛼(𝑣)𝑑𝑥Ω         (7) 

where TVg is the classical Total Variation, but weighted by a function g containing information about 
𝐼0 image edges, and which is obtained by the expression: 

𝑔(|∇𝐼0| ) =  1
1+𝛽|∇𝐼0|2                                                                           (8) 

being 𝛽 a positive constant that weights the contributions of the gradient in function 𝑔 for edge detection. 

It is necessary to minimize equation (7). Chambolle [18] developed a mathematical approach on dual 
formulation based on the fact that if the function is not convex and therefore it owns some local minima 
besides the global one, to calculate the global minimum, he proposed to convert this not strictly convex 
function in a strictly convex one. To this aim, he adds another function 𝑣, so that the location of the 
minimum is performed by setting 𝑣 minimizing with respect to 𝑢; and setting 𝑢 minimizing with respect 
to 𝑣 separately and two both are iterated until convergence. Hence two equations are to be solved: 

• 𝑣 being fixed, 𝑢 is minimized as solution of: 

𝑚𝑖𝑚𝑢 �𝑇𝑇𝑔(𝑢) +  
1

2𝜃
‖𝑢 − 𝜐‖𝐿2

2 � 
(9) 

• 𝑢 being fixed, 𝑣 is minimized as solution of: 

𝑚𝑖𝑚𝑣   � 1
2𝜃
‖𝑢 −  𝜐‖𝐿2

2 +  𝜆 ∫ 𝜆𝑃1Ω (𝑥, 𝑐1, 𝑐2)𝜐 +  𝛼𝜐(𝛼)𝑑𝑥�                                                         (10) 

The solution to (9) is  

𝑢 = 𝑣 −  𝜃𝑑𝑖𝑣 𝑝    (11) 

   Where 𝑝 = (𝑝1, 𝑝2)  is given by 

𝑔(𝑥)∇(𝜃𝑑𝑖𝑣 𝑝 − 𝑣) −  |∇(𝜃𝑑𝑖𝑣 𝑝 − 𝑣|𝑝 =  0  (12) 

The previous equation can be solved by a fixed point method, so the problem in the continuous space is 
translated to the discrete space, much more feasible. This is,  

𝑝0 = 0 

𝑝𝑛+1 =  
𝑝𝑛 +  𝛿𝛿∇(𝑑𝑖𝑣(𝑝𝑛) − 𝑣

𝜃)

1 + 𝛿𝛿
𝑔(𝑥) |∇(𝑑𝑖𝑣( 𝑝𝑛) − 𝑣/𝜃|

 

 

    (13) 

The solution to equation (10) to locate the minimum of 𝑣 is given by 

𝑣 = 𝑚𝑖𝑚{max{𝑢(𝑥) −  𝜃𝜆𝑃1(𝑥, 𝑐1, 𝑐2), 0}, 1} (14) 

To minimize the energy it is necessary to iterate (13) and (14). The values 𝑐1 and 𝑐2 are updated every 
N defined iterations. There are some configurable parameters, such as λ, which governs how soft the 
contours can be. The smaller λ is, the smoother the edges are (it fits worst the possible existing 
irregularities). β indicates the importance of the gradient at the location of the edges. 

Knowledge on pre-established patient position during image acquisition allows spurious region 
filtering. After that, liver vessels are integrated through morphologic filling operations.   



 

2.3. Extension to 3D of the proposed method 

We propose to extend this model formulation to 3D by considering the following premises: 

• The characteristics functions 𝑢 and 𝑣, i.e., the minimizers of the active contours have three 
dimensions instead of two. They can be named as active surfaces. Same concept remains for the 
values c1, c2 ∈ R  which are the intensity values inside and outside the active surface, 
respectively.  

• The calculation of the Probability Distribution Function and the extraction of values c1 and c2  is 
calculated for a volume. 

The minimization method is also to be extended to a higher dimension. To achieve so: 

• The edge detection function 𝑔 has to consider gradients in the three axes, 𝑔 = (𝑔𝑥 ,𝑔𝑦 ,𝑔𝑧)  

• The minimization process is solved with PDE, by the same fixed point method, being now 
spatial point 𝑝 = (𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧) 

The parameters that can be configured in the minimization process remain being the same: λ, β y N. 

The main aim of the minimization method used to make the active contour evolve, this is, the dual 
approach of the variational problem proposed by Chambolle,  is to converge in the global minimum and 
not to get stuck in local minima. Under this consideration, initialization is not so crucial, since the 
algorithm manages to converge to the global solution and thus, obtain the optimal segmentation of the 
object. The implementation of the minimization is independent of the initial condition.  In this case, it has 
been chosen 𝑢 = 𝑣 =  𝐼0

max (𝐼0)
,   𝑐1 =  𝑐2 = 𝑝𝑥 = 𝑝𝑦 = 𝑝𝑧 = 0, being 𝐼0  the original image after being 

smoothed by means of a Gaussian function.  

 

3. EXPERIMENTAL RESULTS 

3.1. Dataset 

The sequences used for validation tests have been acquired by an Abanto machine of Siemens 1.5 T. 
Several sequences are obtained in every study, but VIBE has been chosen by the radiologists due to its 
quality. Among VIBE group of sequences, VIBE axial gap has been used. The VIBE protocol is the ultra-
fast gradient echo sequences that Siemens HW provides. There are 18 datasets available for testing, all of 
them of healthy livers. Every sequence in the dataset contains 21 images (slices) 160 x 256 pixels size. 

3.2. Gold standard and metrics 

In order to validate the results of the segmentation process it is necessary to establish how the results 
will be compared. This corresponds to determine the gold standard and the metrics. The gold standard in 
our case has been generated manually by radiologist slice by slice. On the other hand, in the literature, 
there are different ways of showing results by using different metrics [27][28]. In our case, according to 
the metrics more frequently used in the literature for liver segmentation, True Positive Rate (TPR), False 
Positive Rate (FPR), Accuracy (ACC), Dice Similarity Coefficient (DSC) and Hausdorff distance (dH) 
have been chosen, being this last metric also known as Maximum Symmetric Surface Distance. These 
metrics are calculated according to the following expressions: 
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where 𝑇𝐺𝐺 is the ground-truth provided by radiologists, 𝑇𝑆 is the segmentation obtained by our method, 
I is the whole image, P the number of positive values in the image, and N the number of negative values 
in the image. dH is calculated considering the surface voxels of both volumes, 𝑇𝑆 and 𝑇𝐺𝐺. The shortest 
distance of every surface voxel of 𝑇𝑆 related to 𝑇𝐺𝐺 surface voxel is estimated, and then, to provide the 
symmetry that makes it be considered as a metric, distance of voxels of  𝑇𝐺𝐺 related to 𝑇𝑆 are calculated. 
Maximum value is retrieved.  

 

3.3. Results 

We have applied our proposed method in 2D and in 3D extension over the validation datasets. The 
established parameters to find a solution to the problem of liver segmentation in abdominal MRI that best 
results presented were obtained with 60 iterations, c1 and c2 are updated every 10 iterations, λ = 0.01, β = 
50 / 2554 , t = 1/8. In Fig. 2 the segmentation achieved in some slices is shown, being the contour in 
yellow the segmented region. The green color on the right corresponds to the ground-truth. Segmentation 
is shown over the VIBE sequence (on the left), which suffers from poor quality contrast, but segmentation 
itself is performed over the generated probability image which makes it possible to deal with images 
presenting better contrast, and thus, allow more accurate segmentation. 



 

Fig. 2. Some slices with liver segmented (in yellow) versus ground-truth (green) over the VIBE sequence: axial gap. Left 
column: liver is segmented with the active contour model in 2D approach. Right column: liver is segmented with our proposed 
method extended to 3D. 

The comparison of the proposed method in 2D with its extension to 3D is shown in table 1.  



 TPR (%) FPR (%) ACC (%) DSC   (%) dH (mm) 

              Our 
method in 2D  

92.10 ± 8.23 0.56 ± 0.36 98.86 ±0.74 89.84 ± 9.10 23.04 ± 12.17 

Our method 
Extended to 3D 

92.52 ± 6.75 0.56 ± 0.36 98.89 ± 0.69 90.19 ± 8.63 22.72 ± 11.96 

Table 1. The values of the metrics obtained with our proposed method in 2D and extended to 3D. 

The 3D extension of the method is slightly more accurate than 2D approach, and it is also a bit more 
robust since the standard deviation in the results is smaller. The bigger difference between 2D and 3D 
approach is the runtime. The needed resources to compute the proposed algorithm in 2D are really low. 
The process takes about 40 seconds in segmenting the sequence. This reduced computing time makes our 
method in 2D suitable for clinical practice, although it should be thoroughly validated before this. All our 
tests have been performed in a computer Dell Optiplex 780, Intel core 2 quad CPU Q9650 with 3 GHz 
and 64 bits. However, in the 3D case, 75 mins are required to fulfill the segmentation process. 

 

4. DISCUSSION 

 The comparison of the quality of the results with other segmentation methods presents certain 
difficulty, since not all the methods available in the literature use either the same metrics or the same 
nature of images. Comparison with methods over CT images is not totally appropriate since every 
acquisition technology presents its own artefacts and limitations in image quality. Moreover, there are not 
public databases in abdominal MRI to have a common ground truth and datasets. Each work has its own 
datasets and ad-hoc gold standard. Our automatic method should be compared with other automatic 
method for MRI images. 

Another problem found for comparison with other methods is that there is a diverse set of metrics 
calculated to validate the quality of the segmentation process. Some works do not provide rigorous tests 
or use few metrics. In this paper, well-known metrics have been implemented, as TPR, FPR, ACC, DSC, 
and dH, as it has been described in previous section 3.2.  

Fully automatic methods that use all or some of these metrics are recent works by Huynh et al. [17], Oh 
et al. [29], Masoumi [12], López-Mir et al. [14] and Gloger et al. [15]. The metrics obtained by these 
methods in comparison to ours are gathered in table 2.  

Method ACC (%) DSC   (%) TPR (%) FPR (%) dH (mm) 

Huynn et al. [17] 99.4±0.14 93.6±1.7 - -  

Oh [29] - 93.9±1.6 92.5±3.1 4.5±3.2  

Masoumi[12] 94% - - -  

López - Mir [14] - 95.0±1.0 - - 33.58 ± 6.1 

Gloger[15] - 94.0±2.0 - - 20.35 ± 8.66 

Our 3D method  98.89 ± 0.69 90.19 ± 8.63 92.52 ± 6.75 0.56 ± 0.36 22.72 ± 11.96 

 

Table 2. Comparison of metrics obtained by our proposed method and other automatic methods performing over MRI images 



As it can be appreciated from the table 2 the results of the metrics obtained by our method are in line 
with the ones provided by the methods of the state of the art.  

However, although our methods provide promising results, further tests and exhaustive validation and 
certification would be required for its use in real clinical practice. The proposed method can be applied to 
other acquisition protocols from different scanning devices. The response of the liver for specific 
acquisition protocol is gathered in the generated model of the liver. Probability map is obtained regarding 
this previously calculated model.  The methodology explained in this paper can be applied to segment 
other tissues in the near future. 

Comparative analysis of the computing time of the proposed methods with the ones referred in the 
state-of-the-art presents difficulties mainly because hardware and datasets vary among different settings. 
Our proposed method manages to carry out segmentation in 40.0 ± 2.5 seconds for a dataset of 21 slices 
of 160 x 256 size. Huynh et al. in [17] reports 1.03 ± 0.13 min in PC Intel Xeon 2.66 GHz. Therein, they 
use datasets of around 88 slices with different sizes, 256x256, 384x385, 512 x512. In comparison to the 
others we find they are slower. López-Mir [14] uses 16 datasets ranging from 76 to 104 slices of 512x512 
size. His proposed method needs from 7 to 11 min for extracting the liver volume. Oh et al. in [29] uses a 
Intel Xeon CPU X5355 @ 2.66 GHz with 16 GB of main memory in a Linux OS. The segmentation 
process took 13 min for a dataset of 128 slices of size 256x256. Masoumi et al. [12] use images of 256 x 
256 pixels size and they do not provide any information about computing time. Finally, Gloger et al. in 
[16] report tests over datasets of healthy and fatty livers. The runtime analysis was performed on a 1.8 
GHz Intel core 2 Duo Processor with 3 GB of RAM, and it ranges from 11.22 ± 2.78 min for healthy 
livers and 15.37 ± 4.96 min for fatty livers. Size of dataset is 64 slices of images of 176 x 256 pixels size. 

A general overview indicates that the one needing the lowest computational time to segment the whole 
liver seems to be Huynh et al. but even if comparison is not totally feasible, our proposed method can be 
considered faster than average. 

 

5. CONCLUSIONS 

The aim of this paper was to detail the theoretical and practical issues associated with the 
implementation of a new automatic method for more accurate liver segmentation in MRI images. The 
proposed approach considers a previous active contour model. The process of minimization of the active 
contour is proposed to be done by means of the dual formulation of variational approach. Furthermore, 
we propose to transform the MRI gray-level image of every slice in a sequence in a new probability map 
according to a statistical model of the liver previously generated. This new image presents higher contrast 
among tissues, which allows a better segmentation. The method has been extended to 3D. The method in 
2D and extended to 3D has been validated and compared over MRI abdominal images for liver 
segmentation. Comparison has been made with other state-of-the-art methods. 

As main conclusion of this paper, we obtain that our proposed 3D automatic method is a valuable 
method for liver segmentation in MRI images. An accuracy of 98.89 and Dice Similarity Coefficient of 
90.19 are aligned with other methods of the state-of-the-art.     
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